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Outline

« Background

 Streamflow Variability
— Grand Coulee as an Example
— Regional Assessment

 National Hydropower Asset Assessment Project

» Copula Applications on Hydrologic Engineering
— Application I: Extreme Rainfall
— Application ll: Droughts

* Future Research



Background - Hydroelectricity
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— Hydro: 7% of the US & 19% of the world total
— Nuclear: 19% of the US & 15% of the world total

» Hydropower generation is not fully proportional to capacity



Other Impact - Nuclear Plant Cooling

e TVA Browns Ferry Nuclear Plant
— 3494 MW (ORNL Jaguar 5~10 MW)
— 10% of the TVA total

e Aug 2007, TVA reactor shut
down; cooling water from river
too hot

— "We don't believe we've ever shut

temperature,” said John Moulton,
spokesman.

+ Aug 2010, Browns Ferry reduced |\\{: "
to 45% due to water temperature A e
concern

— TVA spent $40 million to replace the
electricity ($2 million per day)

Picture provided by Boualm Hadjerioua



Streamflow Variability

 Streamflow variability is often large and unpredictable

* Joint influence
— Natural variability
— Snowmelt and groundwater recharge
— Dam regulation / power generation
— Domestic / industrial water usage
— Vegetation and urbanization
— Climate change

 Major technical challenges
— Streamflow at ungauged locations
— Watershed modeling
— Climate projection



Grand Coulee

 The largest hydropower
facility in the US

 Capacity 6495 MW

* 8.7% of the US
Hydropower total

» Upper Columbia River
basin

« Capacity factor 39.03%

¥ . 8 out of the 10 Iargest hydropower
L facilities from the same region

e Dam attributes were not found in
the National Inventory of Dam



Between Generation & Streamflow

o Data Oct. 1977 ~ Sept. 2007
— EIA monthly generation
— USGS 09423000

— Strong correlation between flow &
generation (p = 0.93)

* P=eyQH

— g, efficiency; v, specific weight; Q,
flow rate; H, head; P, power

— e*H = 266.78 ft
— ife=0.7, H=381.11 ft
— Hydraulic head: 380 ft

 Estimate potential power
generation from streamflow
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Capacity & Performance Factor

« Capacity Factor
— Generation / (Capacity * 1 year)

— Fluctuation due to streamflow
availability

— How frequent is a facility
utilized?

 Performance (efficiency)
ok I:,avg/ T Qang
— Operation and regulation

» Both curves do not act
consistently

 Constant head assumption to
be relaxed when more detailed
data are available

Percentage (%)
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Seasonal Variability

Probability Density Flow-duration Curve
x 10° x 10°
3 . . . - 2.5
25} Fall | Fall
% Winter - 2 Winter
é | Spring 1 S Spring
215 Summer | | g", 15 Summer | |
= Annual - Annual
8 1y 2
0 ' ' ' 0.5 i : : :
0 0.5 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1
discharge (cfs) x 10° Exceedence Probability
 The upper 20% quantiles varies around 15000 cfs from fall to winter

— 700000 MWh difference

» Seasonality needs to be properly accounted for

— Important feature for future site selection

 Streamflow has high temporal correlation

— How can we utilize some new statistical methods to improve the forecasting?



Regional Assessment

Precipitation: Annual 2007

* Analysis of historic
generation, runoff, and fe /T
precipitation time series

USGS Waterwatch Runoff (mm)
- Available for each subbasin (HUCOS8)

= CompUted from Observed Streamflow recipitation (in.
normalized by drainage area o Dhror Diose Moo

Tig] 5
{fwrwrw . prismelimate. M 008

- Available for each (4km)2 grid

- Observation adjusted by
topographic features

 Region-based Assessment



Region 06 - Tennessee

Runoff (mm)
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Region 17 - Pacific Northwest

Annual Generation (TWh)
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NHAAP (Pl: Boualem Hadjerioua)

 National Hydropower Asset Assessment Project (NHAAP)

— An integrated and up-to-date national hydropower assessment

- TVA

- USGS

- Gauges Stations
- Water Use

RIS

Data Assembly,
Integration and
Verification

Power Assessment
Tools

*Most of the data are covered by
non-disclosure agreements

| National-, Regional-, Basin-, and State-scale

f J

&

o Reports:

» Hydropower National Assessment
» Climate Change Impacts Assessment
» ReEDS Modeling
» Other Information Requests
@ GIS Tools to study and analyze:
» Generation & Streamflow
» Hydropower Opportunities
» Hydrology
» Climate
o Graphs, Maps, and Statistics:

» Current Hydropower Status
» Capacity & Generation

> Reservoir Characteristics

» Infrastructure status /
- :'-A._-_ — = . - . T-':F




NHAAP Web-based GIS
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Challenge for Ungauged Locations

« ~84,000 non-power dams vs ~22,000 USGS gauges

— Less than 10,000 gauges are current

» Regression approach: Vogel et al. (1999)
— Regression formula for 19 HUC02 Regions
— Variables: drainage area, precipitation, temperature
— Annual mean flow

« Runoff map approach e ————
— Runoff: Streamflow
normalized by drainage area

— Water watch approach

* However, the accuracy of

stream GIS layers is the

¥
€01 & {roaaghe - Imagery qfu'i.w.hmui#q-_ VDA Frrm Serven Agercy, Map gats 60010 Coogin - Tama et (e R AL

dominate factor 3 or 4200 cfs?



Low-flow Analysis

LUSGS NWIS Streamgages
7-day lowflow = 200,000 gpm
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Extreme Rainfall - Univariate Approach

» Selection of annual maximum precipitation
— Durations are not the actual durations of rainfall events
— Long-term maximum may cover multiple events

— Short-term maximum encompasses only part of the extreme
event

D=1hr <

depth(inch)
O
I

o
i

8 16 30 40 48
hour



Correlation and Dependence

 Classification

— Temporal: autoregression model (AR), Markov chain
— Spatial: geostatistics (Kriging method)
— Inter-variable: Bayesian approach

 Conventionally quantified by the Pearson’s linear correlation
coefficient p

Pxy = E[(X =X)(Y = y)]/ Sd[ X]Sd[Y]
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— Only valid for Gaussian (or elliptic) distributions



Example - Bivariate Distribution

Bivariate Gaussian distribution, p = 0.8 3

' f.(x)=[ hy(xy)dy
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Copulas

 Transformation of joint cumulative

distribution
— Hyy(x,y) = Cyy(u,v)

marginals: u = F,(x), v=F,(y)

— Sklar (19592.pro_ved that the
ion is unique for

transforma
continuous r.v.s

 Use copulas to construct joint

distributions

— Marginal distributions =>
selecting suitable PDFs

— Dependence structure =>
selecting suitable copulas

— Together they form the joint

distribution

Bivariate Gaussian distribution, p = 0.1
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Extreme Rainfall Frequency Analysis

« Bivariate distribution Hp, Hp,, Hp,

— Total precipitation (P), duration (D), and peak
intensity (1)

— Marginal: Extreme Value Type | (EV1), Log
Normal (LN)

— Dependence: Frank Family
 Applications
— Estimate of depth for known duration
Fo(pld-1<D<d)=1-yT
— Estimate of peak intensity for known duration

F(i;Jd-1<D<d)=1-4T

— Estimate of peak intensity for known depth
E[l |P> p]

HPD(p,d), AMP events, Station: 120132
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Estimate of depth for known duration

rainfall depth {mm)

rainfall depth (mm)
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Estimate of peak intensity for known duration

T-year peak intensity i+ given duration d: F(i|d-1<D<d)=1-1/T
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Rainfall Peak Attributes

 Given depth (P) and duration (D), compute the conditional expectation of peak intensity
(I) and percentage time to peak (T )

duration d = 8 hours
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Joint Deficit Index

e Comparison between 1-mn SPI, 12-mn SPI, and JDI
— 12-mn SPI changes slowly, weak in reflecting emerging drought
— 1-mn SPI changes rapidly, weak in reflecting accumulative deficit
— JDl reflects joint deficit

1-Mn SPI 12-Mn SPI
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Precipitation
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Potential of Future Droughts

* Required precipitation for reaching joint normal status (K. = 0.5) in the

* Probability of drought recovery
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Climate Change on Snowmelt Timing

* Investigate the trend of 1960-1999 spring onset (Cayan et al., 2001)
 Simulation: five ensemble members of VIC model

 Observation: 223 unregulated and snowmelt driven USGS stations

-20 -12 -4 4 12 20
Joint work with Moetasim Ashfaq and the co-authors



Climate-induced non-stationary

Feturn period (years)
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Annual maximum precipitation in a 6-hr interval

Generalized extreme values (GEV) distribution

Median of global return period corresponding to year-1999 estimates

Goodness-of-fit tests at 5% significant level:
— NCEP: 2.56%, ERA40: 1.24%, CCSM3: 0.02%



National Hydrography Dataset

Query Wiew Select Measure Print Cownload Longituda Latitude: -84.27, 35.89 Scale Factor




Thank you
Questions?

Shih-Chieh Kao

kaos@ornl.gov; http://www.ornl.gov/~5v1/
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